website diff lib/js/qrcode.js @ rev 1344

Resize balinor logo to 120px
author Christophe Lincoln <pankso@slitaz.org>
date Fri Jan 22 23:02:15 2021 +0100 (2021-01-22)
parents
children
line diff
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/lib/js/qrcode.js	Fri Jan 22 23:02:15 2021 +0100
     1.3 @@ -0,0 +1,733 @@
     1.4 +/* qr.js -- QR code generator in Javascript (revision 2011-01-19)
     1.5 + * Written by Kang Seonghoon <public+qrjs@mearie.org>.
     1.6 + *
     1.7 + * This source code is in the public domain; if your jurisdiction does not
     1.8 + * recognize the public domain the terms of Creative Commons CC0 license
     1.9 + * apply. In the other words, you can always do what you want.
    1.10 + */
    1.11 +
    1.12 +var QRCode = (function(){
    1.13 +
    1.14 +/* Quick overview: QR code composed of 2D array of modules (a rectangular
    1.15 + * area that conveys one bit of information); some modules are fixed to help
    1.16 + * the recognition of the code, and remaining data modules are further divided
    1.17 + * into 8-bit code words which are augumented by Reed-Solomon error correcting
    1.18 + * codes (ECC). There could be multiple ECCs, in the case the code is so large
    1.19 + * that it is helpful to split the raw data into several chunks.
    1.20 + *
    1.21 + * The number of modules is determined by the code's "version", ranging from 1
    1.22 + * (21x21) to 40 (177x177). How many ECC bits are used is determined by the
    1.23 + * ECC level (L/M/Q/H). The number and size (and thus the order of generator
    1.24 + * polynomial) of ECCs depend to the version and ECC level.
    1.25 + */
    1.26 +
    1.27 +// per-version information (cf. JIS X 0510:2004 pp. 30--36, 71)
    1.28 +//
    1.29 +// [0]: the degree of generator polynomial by ECC levels
    1.30 +// [1]: # of code blocks by ECC levels
    1.31 +// [2]: left-top positions of alignment patterns
    1.32 +//
    1.33 +// the number in this table (in particular, [0]) does not exactly match with
    1.34 +// the numbers in the specficiation. see augumenteccs below for the reason.
    1.35 +var VERSIONS = [
    1.36 +	null,
    1.37 +	[[10, 7,17,13], [ 1, 1, 1, 1], []],
    1.38 +	[[16,10,28,22], [ 1, 1, 1, 1], [4,16]],
    1.39 +	[[26,15,22,18], [ 1, 1, 2, 2], [4,20]],
    1.40 +	[[18,20,16,26], [ 2, 1, 4, 2], [4,24]],
    1.41 +	[[24,26,22,18], [ 2, 1, 4, 4], [4,28]],
    1.42 +	[[16,18,28,24], [ 4, 2, 4, 4], [4,32]],
    1.43 +	[[18,20,26,18], [ 4, 2, 5, 6], [4,20,36]],
    1.44 +	[[22,24,26,22], [ 4, 2, 6, 6], [4,22,40]],
    1.45 +	[[22,30,24,20], [ 5, 2, 8, 8], [4,24,44]],
    1.46 +	[[26,18,28,24], [ 5, 4, 8, 8], [4,26,48]],
    1.47 +	[[30,20,24,28], [ 5, 4,11, 8], [4,28,52]],
    1.48 +	[[22,24,28,26], [ 8, 4,11,10], [4,30,56]],
    1.49 +	[[22,26,22,24], [ 9, 4,16,12], [4,32,60]],
    1.50 +	[[24,30,24,20], [ 9, 4,16,16], [4,24,44,64]],
    1.51 +	[[24,22,24,30], [10, 6,18,12], [4,24,46,68]],
    1.52 +	[[28,24,30,24], [10, 6,16,17], [4,24,48,72]],
    1.53 +	[[28,28,28,28], [11, 6,19,16], [4,28,52,76]],
    1.54 +	[[26,30,28,28], [13, 6,21,18], [4,28,54,80]],
    1.55 +	[[26,28,26,26], [14, 7,25,21], [4,28,56,84]],
    1.56 +	[[26,28,28,30], [16, 8,25,20], [4,32,60,88]],
    1.57 +	[[26,28,30,28], [17, 8,25,23], [4,26,48,70,92]],
    1.58 +	[[28,28,24,30], [17, 9,34,23], [4,24,48,72,96]],
    1.59 +	[[28,30,30,30], [18, 9,30,25], [4,28,52,76,100]],
    1.60 +	[[28,30,30,30], [20,10,32,27], [4,26,52,78,104]],
    1.61 +	[[28,26,30,30], [21,12,35,29], [4,30,56,82,108]],
    1.62 +	[[28,28,30,28], [23,12,37,34], [4,28,56,84,112]],
    1.63 +	[[28,30,30,30], [25,12,40,34], [4,32,60,88,116]],
    1.64 +	[[28,30,30,30], [26,13,42,35], [4,24,48,72,96,120]],
    1.65 +	[[28,30,30,30], [28,14,45,38], [4,28,52,76,100,124]],
    1.66 +	[[28,30,30,30], [29,15,48,40], [4,24,50,76,102,128]],
    1.67 +	[[28,30,30,30], [31,16,51,43], [4,28,54,80,106,132]],
    1.68 +	[[28,30,30,30], [33,17,54,45], [4,32,58,84,110,136]],
    1.69 +	[[28,30,30,30], [35,18,57,48], [4,28,56,84,112,140]],
    1.70 +	[[28,30,30,30], [37,19,60,51], [4,32,60,88,116,144]],
    1.71 +	[[28,30,30,30], [38,19,63,53], [4,28,52,76,100,124,148]],
    1.72 +	[[28,30,30,30], [40,20,66,56], [4,22,48,74,100,126,152]],
    1.73 +	[[28,30,30,30], [43,21,70,59], [4,26,52,78,104,130,156]],
    1.74 +	[[28,30,30,30], [45,22,74,62], [4,30,56,82,108,134,160]],
    1.75 +	[[28,30,30,30], [47,24,77,65], [4,24,52,80,108,136,164]],
    1.76 +	[[28,30,30,30], [49,25,81,68], [4,28,56,84,112,140,168]]];
    1.77 +
    1.78 +// mode constants (cf. Table 2 in JIS X 0510:2004 p. 16)
    1.79 +var MODE_TERMINATOR = 0;
    1.80 +var MODE_NUMERIC = 1, MODE_ALPHANUMERIC = 2, MODE_OCTET = 4, MODE_KANJI = 8;
    1.81 +
    1.82 +// validation regexps
    1.83 +var NUMERIC_REGEXP = /^\d*$/;
    1.84 +var ALPHANUMERIC_REGEXP = /^[A-Za-z0-9 $%*+\-./:]*$/;
    1.85 +var ALPHANUMERIC_OUT_REGEXP = /^[A-Z0-9 $%*+\-./:]*$/;
    1.86 +
    1.87 +// ECC levels (cf. Table 22 in JIS X 0510:2004 p. 45)
    1.88 +var ECCLEVEL_L = 1, ECCLEVEL_M = 0, ECCLEVEL_Q = 3, ECCLEVEL_H = 2;
    1.89 +
    1.90 +// GF(2^8)-to-integer mapping with a reducing polynomial x^8+x^4+x^3+x^2+1
    1.91 +// invariant: GF256_MAP[GF256_INVMAP[i]] == i for all i in [1,256)
    1.92 +var GF256_MAP = [], GF256_INVMAP = [-1];
    1.93 +for (var i = 0, v = 1; i < 255; ++i) {
    1.94 +	GF256_MAP.push(v);
    1.95 +	GF256_INVMAP[v] = i;
    1.96 +	v = (v * 2) ^ (v >= 128 ? 0x11d : 0);
    1.97 +}
    1.98 +
    1.99 +// generator polynomials up to degree 30
   1.100 +// (should match with polynomials in JIS X 0510:2004 Appendix A)
   1.101 +//
   1.102 +// generator polynomial of degree K is product of (x-\alpha^0), (x-\alpha^1),
   1.103 +// ..., (x-\alpha^(K-1)). by convention, we omit the K-th coefficient (always 1)
   1.104 +// from the result; also other coefficients are written in terms of the exponent
   1.105 +// to \alpha to avoid the redundant calculation. (see also calculateecc below.)
   1.106 +var GF256_GENPOLY = [[]];
   1.107 +for (var i = 0; i < 30; ++i) {
   1.108 +	var prevpoly = GF256_GENPOLY[i], poly = [];
   1.109 +	for (var j = 0; j <= i; ++j) {
   1.110 +		var a = (j < i ? GF256_MAP[prevpoly[j]] : 0);
   1.111 +		var b = GF256_MAP[(i + (prevpoly[j-1] || 0)) % 255];
   1.112 +		poly.push(GF256_INVMAP[a ^ b]);
   1.113 +	}
   1.114 +	GF256_GENPOLY.push(poly);
   1.115 +}
   1.116 +
   1.117 +// alphanumeric character mapping (cf. Table 5 in JIS X 0510:2004 p. 19)
   1.118 +var ALPHANUMERIC_MAP = {};
   1.119 +for (var i = 0; i < 45; ++i) {
   1.120 +	ALPHANUMERIC_MAP['0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'.charAt(i)] = i;
   1.121 +}
   1.122 +
   1.123 +// mask functions in terms of row # and column #
   1.124 +// (cf. Table 20 in JIS X 0510:2004 p. 42)
   1.125 +var MASKFUNCS = [
   1.126 +	function(i,j) { return (i+j) % 2 == 0; },
   1.127 +	function(i,j) { return i % 2 == 0; },
   1.128 +	function(i,j) { return j % 3 == 0; },
   1.129 +	function(i,j) { return (i+j) % 3 == 0; },
   1.130 +	function(i,j) { return (((i/2)|0) + ((j/3)|0)) % 2 == 0; },
   1.131 +	function(i,j) { return (i*j) % 2 + (i*j) % 3 == 0; },
   1.132 +	function(i,j) { return ((i*j) % 2 + (i*j) % 3) % 2 == 0; },
   1.133 +	function(i,j) { return ((i+j) % 2 + (i*j) % 3) % 2 == 0; }];
   1.134 +
   1.135 +// returns true when the version information has to be embeded.
   1.136 +var needsverinfo = function(ver) { return ver > 6; };
   1.137 +
   1.138 +// returns the size of entire QR code for given version.
   1.139 +var getsizebyver = function(ver) { return 4 * ver + 17; };
   1.140 +
   1.141 +// returns the number of bits available for code words in this version.
   1.142 +var nfullbits = function(ver) {
   1.143 +	/*
   1.144 +	 * |<--------------- n --------------->|
   1.145 +	 * |        |<----- n-17 ---->|        |
   1.146 +	 * +-------+                ///+-------+ ----
   1.147 +	 * |       |                ///|       |    ^
   1.148 +	 * |  9x9  |       @@@@@    ///|  9x8  |    |
   1.149 +	 * |       | # # # @5x5@ # # # |       |    |
   1.150 +	 * +-------+       @@@@@       +-------+    |
   1.151 +	 *       #                               ---|
   1.152 +	 *                                        ^ |
   1.153 +	 *       #                                |
   1.154 +	 *     @@@@@       @@@@@       @@@@@      | n
   1.155 +	 *     @5x5@       @5x5@       @5x5@   n-17
   1.156 +	 *     @@@@@       @@@@@       @@@@@      | |
   1.157 +	 *       #                                | |
   1.158 +	 * //////                                 v |
   1.159 +	 * //////#                               ---|
   1.160 +	 * +-------+       @@@@@       @@@@@        |
   1.161 +	 * |       |       @5x5@       @5x5@        |
   1.162 +	 * |  8x9  |       @@@@@       @@@@@        |
   1.163 +	 * |       |                                v
   1.164 +	 * +-------+                             ----
   1.165 +	 *
   1.166 +	 * when the entire code has n^2 modules and there are m^2-3 alignment
   1.167 +	 * patterns, we have:
   1.168 +	 * - 225 (= 9x9 + 9x8 + 8x9) modules for finder patterns and
   1.169 +	 *   format information;
   1.170 +	 * - 2n-34 (= 2(n-17)) modules for timing patterns;
   1.171 +	 * - 36 (= 3x6 + 6x3) modules for version information, if any;
   1.172 +	 * - 25m^2-75 (= (m^2-3)(5x5)) modules for alignment patterns
   1.173 +	 *   if any, but 10m-20 (= 2(m-2)x5) of them overlaps with
   1.174 +	 *   timing patterns.
   1.175 +	 */
   1.176 +	var v = VERSIONS[ver];
   1.177 +	var nbits = 16*ver*ver + 128*ver + 64; // finder, timing and format info.
   1.178 +	if (needsverinfo(ver)) nbits -= 36; // version information
   1.179 +	if (v[2].length) { // alignment patterns
   1.180 +		nbits -= 25 * v[2].length * v[2].length - 10 * v[2].length - 55;
   1.181 +	}
   1.182 +	return nbits;
   1.183 +};
   1.184 +
   1.185 +// returns the number of bits available for data portions (i.e. excludes ECC
   1.186 +// bits but includes mode and length bits) in this version and ECC level.
   1.187 +var ndatabits = function(ver, ecclevel) {
   1.188 +	var nbits = nfullbits(ver) & ~7; // no sub-octet code words
   1.189 +	var v = VERSIONS[ver];
   1.190 +	nbits -= 8 * v[0][ecclevel] * v[1][ecclevel]; // ecc bits
   1.191 +	return nbits;
   1.192 +}
   1.193 +
   1.194 +// returns the number of bits required for the length of data.
   1.195 +// (cf. Table 3 in JIS X 0510:2004 p. 16)
   1.196 +var ndatalenbits = function(ver, mode) {
   1.197 +	switch (mode) {
   1.198 +	case MODE_NUMERIC: return (ver < 10 ? 10 : ver < 27 ? 12 : 14);
   1.199 +	case MODE_ALPHANUMERIC: return (ver < 10 ? 9 : ver < 27 ? 11 : 13);
   1.200 +	case MODE_OCTET: return (ver < 10 ? 8 : 16);
   1.201 +	case MODE_KANJI: return (ver < 10 ? 8 : ver < 27 ? 10 : 12);
   1.202 +	}
   1.203 +};
   1.204 +
   1.205 +// returns the maximum length of data possible in given configuration.
   1.206 +var getmaxdatalen = function(ver, mode, ecclevel) {
   1.207 +	var nbits = ndatabits(ver, ecclevel) - 4 - ndatalenbits(ver, mode); // 4 for mode bits
   1.208 +	switch (mode) {
   1.209 +	case MODE_NUMERIC:
   1.210 +		return ((nbits/10) | 0) * 3 + (nbits%10 < 4 ? 0 : nbits%10 < 7 ? 1 : 2);
   1.211 +	case MODE_ALPHANUMERIC:
   1.212 +		return ((nbits/11) | 0) * 2 + (nbits%11 < 6 ? 0 : 1);
   1.213 +	case MODE_OCTET:
   1.214 +		return (nbits/8) | 0;
   1.215 +	case MODE_KANJI:
   1.216 +		return (nbits/13) | 0;
   1.217 +	}
   1.218 +};
   1.219 +
   1.220 +// checks if the given data can be encoded in given mode, and returns
   1.221 +// the converted data for the further processing if possible. otherwise
   1.222 +// returns null.
   1.223 +//
   1.224 +// this function does not check the length of data; it is a duty of
   1.225 +// encode function below (as it depends on the version and ECC level too).
   1.226 +var validatedata = function(mode, data) {
   1.227 +	switch (mode) {
   1.228 +	case MODE_NUMERIC:
   1.229 +		if (!data.match(NUMERIC_REGEXP)) return null;
   1.230 +		return data;
   1.231 +
   1.232 +	case MODE_ALPHANUMERIC:
   1.233 +		if (!data.match(ALPHANUMERIC_REGEXP)) return null;
   1.234 +		return data.toUpperCase();
   1.235 +
   1.236 +	case MODE_OCTET:
   1.237 +		if (typeof data === 'string') { // encode as utf-8 string
   1.238 +			var newdata = [];
   1.239 +			for (var i = 0; i < data.length; ++i) {
   1.240 +				var ch = data.charCodeAt(i);
   1.241 +				if (ch < 0x80) {
   1.242 +					newdata.push(ch);
   1.243 +				} else if (ch < 0x800) {
   1.244 +					newdata.push(0xc0 | (ch >> 6),
   1.245 +						0x80 | (ch & 0x3f));
   1.246 +				} else if (ch < 0x10000) {
   1.247 +					newdata.push(0xe0 | (ch >> 12),
   1.248 +						0x80 | ((ch >> 6) & 0x3f),
   1.249 +						0x80 | (ch & 0x3f));
   1.250 +				} else {
   1.251 +					newdata.push(0xf0 | (ch >> 18),
   1.252 +						0x80 | ((ch >> 12) & 0x3f),
   1.253 +						0x80 | ((ch >> 6) & 0x3f),
   1.254 +						0x80 | (ch & 0x3f));
   1.255 +				}
   1.256 +			}
   1.257 +			return newdata;
   1.258 +		} else {
   1.259 +			return data;
   1.260 +		}
   1.261 +	}
   1.262 +};
   1.263 +
   1.264 +// returns the code words (sans ECC bits) for given data and configurations.
   1.265 +// requires data to be preprocessed by validatedata. no length check is
   1.266 +// performed, and everything has to be checked before calling this function.
   1.267 +var encode = function(ver, mode, data, maxbuflen) {
   1.268 +	var buf = [];
   1.269 +	var bits = 0, remaining = 8;
   1.270 +	var datalen = data.length;
   1.271 +
   1.272 +	// this function is intentionally no-op when n=0.
   1.273 +	var pack = function(x, n) {
   1.274 +		if (n >= remaining) {
   1.275 +			buf.push(bits | (x >> (n -= remaining)));
   1.276 +			while (n >= 8) buf.push((x >> (n -= 8)) & 255);
   1.277 +			bits = 0;
   1.278 +			remaining = 8;
   1.279 +		}
   1.280 +		if (n > 0) bits |= (x & ((1 << n) - 1)) << (remaining -= n);
   1.281 +	};
   1.282 +
   1.283 +	var nlenbits = ndatalenbits(ver, mode);
   1.284 +	pack(mode, 4);
   1.285 +	pack(datalen, nlenbits);
   1.286 +
   1.287 +	switch (mode) {
   1.288 +	case MODE_NUMERIC:
   1.289 +		for (var i = 2; i < datalen; i += 3) {
   1.290 +			pack(parseInt(data.substring(i-2,i+1), 10), 10);
   1.291 +		}
   1.292 +		pack(parseInt(data.substring(i-2), 10), [0,4,7][datalen%3]);
   1.293 +		break;
   1.294 +
   1.295 +	case MODE_ALPHANUMERIC:
   1.296 +		for (var i = 1; i < datalen; i += 2) {
   1.297 +			pack(ALPHANUMERIC_MAP[data.charAt(i-1)] * 45 +
   1.298 +				ALPHANUMERIC_MAP[data.charAt(i)], 11);
   1.299 +		}
   1.300 +		if (datalen % 2 == 1) {
   1.301 +			pack(ALPHANUMERIC_MAP[data.charAt(i-1)], 6);
   1.302 +		}
   1.303 +		break;
   1.304 +
   1.305 +	case MODE_OCTET:
   1.306 +		for (var i = 0; i < datalen; ++i) {
   1.307 +			pack(data[i], 8);
   1.308 +		}
   1.309 +		break;
   1.310 +	};
   1.311 +
   1.312 +	// final bits. it is possible that adding terminator causes the buffer
   1.313 +	// to overflow, but then the buffer truncated to the maximum size will
   1.314 +	// be valid as the truncated terminator mode bits and padding is
   1.315 +	// identical in appearance (cf. JIS X 0510:2004 sec 8.4.8).
   1.316 +	pack(MODE_TERMINATOR, 4);
   1.317 +	if (remaining < 8) buf.push(bits);
   1.318 +
   1.319 +	// the padding to fill up the remaining space. we should not add any
   1.320 +	// words when the overflow already occurred.
   1.321 +	while (buf.length + 1 < maxbuflen) buf.push(0xec, 0x11);
   1.322 +	if (buf.length < maxbuflen) buf.push(0xec);
   1.323 +	return buf;
   1.324 +};
   1.325 +
   1.326 +// calculates ECC code words for given code words and generator polynomial.
   1.327 +//
   1.328 +// this is quite similar to CRC calculation as both Reed-Solomon and CRC use
   1.329 +// the certain kind of cyclic codes, which is effectively the division of
   1.330 +// zero-augumented polynomial by the generator polynomial. the only difference
   1.331 +// is that Reed-Solomon uses GF(2^8), instead of CRC's GF(2), and Reed-Solomon
   1.332 +// uses the different generator polynomial than CRC's.
   1.333 +var calculateecc = function(poly, genpoly) {
   1.334 +	var modulus = poly.slice(0);
   1.335 +	var polylen = poly.length, genpolylen = genpoly.length;
   1.336 +	for (var i = 0; i < genpolylen; ++i) modulus.push(0);
   1.337 +	for (var i = 0; i < polylen; ) {
   1.338 +		var quotient = GF256_INVMAP[modulus[i++]];
   1.339 +		if (quotient >= 0) {
   1.340 +			for (var j = 0; j < genpolylen; ++j) {
   1.341 +				modulus[i+j] ^= GF256_MAP[(quotient + genpoly[j]) % 255];
   1.342 +			}
   1.343 +		}
   1.344 +	}
   1.345 +	return modulus.slice(polylen);
   1.346 +};
   1.347 +
   1.348 +// auguments ECC code words to given code words. the resulting words are
   1.349 +// ready to be encoded in the matrix.
   1.350 +//
   1.351 +// the much of actual augumenting procedure follows JIS X 0510:2004 sec 8.7.
   1.352 +// the code is simplified using the fact that the size of each code & ECC
   1.353 +// blocks is almost same; for example, when we have 4 blocks and 46 data words
   1.354 +// the number of code words in those blocks are 11, 11, 12, 12 respectively.
   1.355 +var augumenteccs = function(poly, nblocks, genpoly) {
   1.356 +	var subsizes = [];
   1.357 +	var subsize = (poly.length / nblocks) | 0, subsize0 = 0;
   1.358 +	var pivot = nblocks - poly.length % nblocks;
   1.359 +	for (var i = 0; i < pivot; ++i) {
   1.360 +		subsizes.push(subsize0);
   1.361 +		subsize0 += subsize;
   1.362 +	}
   1.363 +	for (var i = pivot; i < nblocks; ++i) {
   1.364 +		subsizes.push(subsize0);
   1.365 +		subsize0 += subsize+1;
   1.366 +	}
   1.367 +	subsizes.push(subsize0);
   1.368 +
   1.369 +	var eccs = [];
   1.370 +	for (var i = 0; i < nblocks; ++i) {
   1.371 +		eccs.push(calculateecc(poly.slice(subsizes[i], subsizes[i+1]), genpoly));
   1.372 +	}
   1.373 +
   1.374 +	var result = [];
   1.375 +	var nitemsperblock = (poly.length / nblocks) | 0;
   1.376 +	for (var i = 0; i < nitemsperblock; ++i) {
   1.377 +		for (var j = 0; j < nblocks; ++j) {
   1.378 +			result.push(poly[subsizes[j] + i]);
   1.379 +		}
   1.380 +	}
   1.381 +	for (var j = pivot; j < nblocks; ++j) {
   1.382 +		result.push(poly[subsizes[j+1] - 1]);
   1.383 +	}
   1.384 +	for (var i = 0; i < genpoly.length; ++i) {
   1.385 +		for (var j = 0; j < nblocks; ++j) {
   1.386 +			result.push(eccs[j][i]);
   1.387 +		}
   1.388 +	}
   1.389 +	return result;
   1.390 +};
   1.391 +
   1.392 +// auguments BCH(p+q,q) code to the polynomial over GF(2), given the proper
   1.393 +// genpoly. the both input and output are in binary numbers, and unlike
   1.394 +// calculateecc genpoly should include the 1 bit for the highest degree.
   1.395 +//
   1.396 +// actual polynomials used for this procedure are as follows:
   1.397 +// - p=10, q=5, genpoly=x^10+x^8+x^5+x^4+x^2+x+1 (JIS X 0510:2004 Appendix C)
   1.398 +// - p=18, q=6, genpoly=x^12+x^11+x^10+x^9+x^8+x^5+x^2+1 (ibid. Appendix D)
   1.399 +var augumentbch = function(poly, p, genpoly, q) {
   1.400 +	var modulus = poly << q;
   1.401 +	for (var i = p - 1; i >= 0; --i) {
   1.402 +		if ((modulus >> (q+i)) & 1) modulus ^= genpoly << i;
   1.403 +	}
   1.404 +	return (poly << q) | modulus;
   1.405 +};
   1.406 +
   1.407 +// creates the base matrix for given version. it returns two matrices, one of
   1.408 +// them is the actual one and the another represents the "reserved" portion
   1.409 +// (e.g. finder and timing patterns) of the matrix.
   1.410 +//
   1.411 +// some entries in the matrix may be undefined, rather than 0 or 1. this is
   1.412 +// intentional (no initialization needed!), and putdata below will fill
   1.413 +// the remaining ones.
   1.414 +var makebasematrix = function(ver) {
   1.415 +	var v = VERSIONS[ver], n = getsizebyver(ver);
   1.416 +	var matrix = [], reserved = [];
   1.417 +	for (var i = 0; i < n; ++i) {
   1.418 +		matrix.push([]);
   1.419 +		reserved.push([]);
   1.420 +	}
   1.421 +
   1.422 +	var blit = function(y, x, h, w, bits) {
   1.423 +		for (var i = 0; i < h; ++i) {
   1.424 +			for (var j = 0; j < w; ++j) {
   1.425 +				matrix[y+i][x+j] = (bits[i] >> j) & 1;
   1.426 +				reserved[y+i][x+j] = 1;
   1.427 +			}
   1.428 +		}
   1.429 +	};
   1.430 +
   1.431 +	// finder patterns and a part of timing patterns
   1.432 +	// will also mark the format information area (not yet written) as reserved.
   1.433 +	blit(0, 0, 9, 9, [0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x17f, 0x00, 0x40]);
   1.434 +	blit(n-8, 0, 8, 9, [0x100, 0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x7f]);
   1.435 +	blit(0, n-8, 9, 8, [0xfe, 0x82, 0xba, 0xba, 0xba, 0x82, 0xfe, 0x00, 0x00]);
   1.436 +
   1.437 +	// the rest of timing patterns
   1.438 +	for (var i = 9; i < n-8; ++i) {
   1.439 +		matrix[6][i] = matrix[i][6] = ~i & 1;
   1.440 +		reserved[6][i] = reserved[i][6] = 1;
   1.441 +	}
   1.442 +
   1.443 +	// alignment patterns
   1.444 +	var aligns = v[2], m = aligns.length;
   1.445 +	for (var i = 0; i < m; ++i) {
   1.446 +		var minj = (i==0 || i==m-1 ? 1 : 0), maxj = (i==0 ? m-1 : m);
   1.447 +		for (var j = minj; j < maxj; ++j) {
   1.448 +			blit(aligns[i], aligns[j], 5, 5, [0x1f, 0x11, 0x15, 0x11, 0x1f]);
   1.449 +		}
   1.450 +	}
   1.451 +
   1.452 +	// version information
   1.453 +	if (needsverinfo(ver)) {
   1.454 +		var code = augumentbch(ver, 6, 0x1f25, 12);
   1.455 +		var k = 0;
   1.456 +		for (var i = 0; i < 6; ++i) {
   1.457 +			for (var j = 0; j < 3; ++j) {
   1.458 +				matrix[i][(n-11)+j] = matrix[(n-11)+j][i] = (code >> k++) & 1;
   1.459 +				reserved[i][(n-11)+j] = reserved[(n-11)+j][i] = 1;
   1.460 +			}
   1.461 +		}
   1.462 +	}
   1.463 +
   1.464 +	return {matrix: matrix, reserved: reserved};
   1.465 +};
   1.466 +
   1.467 +// fills the data portion (i.e. unmarked in reserved) of the matrix with given
   1.468 +// code words. the size of code words should be no more than available bits,
   1.469 +// and remaining bits are padded to 0 (cf. JIS X 0510:2004 sec 8.7.3).
   1.470 +var putdata = function(matrix, reserved, buf) {
   1.471 +	var n = matrix.length;
   1.472 +	var k = 0, dir = -1;
   1.473 +	for (var i = n-1; i >= 0; i -= 2) {
   1.474 +		if (i == 6) --i; // skip the entire timing pattern column
   1.475 +		var jj = (dir < 0 ? n-1 : 0);
   1.476 +		for (var j = 0; j < n; ++j) {
   1.477 +			for (var ii = i; ii > i-2; --ii) {
   1.478 +				if (!reserved[jj][ii]) {
   1.479 +					// may overflow, but (undefined >> x)
   1.480 +					// is 0 so it will auto-pad to zero.
   1.481 +					matrix[jj][ii] = (buf[k >> 3] >> (~k&7)) & 1;
   1.482 +					++k;
   1.483 +				}
   1.484 +			}
   1.485 +			jj += dir;
   1.486 +		}
   1.487 +		dir = -dir;
   1.488 +	}
   1.489 +	return matrix;
   1.490 +};
   1.491 +
   1.492 +// XOR-masks the data portion of the matrix. repeating the call with the same
   1.493 +// arguments will revert the prior call (convenient in the matrix evaluation).
   1.494 +var maskdata = function(matrix, reserved, mask) {
   1.495 +	var maskf = MASKFUNCS[mask];
   1.496 +	var n = matrix.length;
   1.497 +	for (var i = 0; i < n; ++i) {
   1.498 +		for (var j = 0; j < n; ++j) {
   1.499 +			if (!reserved[i][j]) matrix[i][j] ^= maskf(i,j);
   1.500 +		}
   1.501 +	}
   1.502 +	return matrix;
   1.503 +}
   1.504 +
   1.505 +// puts the format information.
   1.506 +var putformatinfo = function(matrix, reserved, ecclevel, mask) {
   1.507 +	var n = matrix.length;
   1.508 +	var code = augumentbch((ecclevel << 3) | mask, 5, 0x537, 10) ^ 0x5412;
   1.509 +	for (var i = 0; i < 15; ++i) {
   1.510 +		var r = [0,1,2,3,4,5,7,8,n-7,n-6,n-5,n-4,n-3,n-2,n-1][i];
   1.511 +		var c = [n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8,7,5,4,3,2,1,0][i];
   1.512 +		matrix[r][8] = matrix[8][c] = (code >> i) & 1;
   1.513 +		// we don't have to mark those bits reserved; always done
   1.514 +		// in makebasematrix above.
   1.515 +	}
   1.516 +	return matrix;
   1.517 +};
   1.518 +
   1.519 +// evaluates the resulting matrix and returns the score (lower is better).
   1.520 +// (cf. JIS X 0510:2004 sec 8.8.2)
   1.521 +//
   1.522 +// the evaluation procedure tries to avoid the problematic patterns naturally
   1.523 +// occuring from the original matrix. for example, it penaltizes the patterns
   1.524 +// which just look like the finder pattern which will confuse the decoder.
   1.525 +// we choose the mask which results in the lowest score among 8 possible ones.
   1.526 +//
   1.527 +// note: zxing seems to use the same procedure and in many cases its choice
   1.528 +// agrees to ours, but sometimes it does not. practically it doesn't matter.
   1.529 +var evaluatematrix = function(matrix) {
   1.530 +	// N1+(k-5) points for each consecutive row of k same-colored modules, where k >= 5. no overlapping row counts.
   1.531 +	var PENALTY_CONSECUTIVE = 3;
   1.532 +	// N2 points for each 2x2 block of same-colored modules. Overlapping block does count.
   1.533 +	var PENALTY_TWOBYTWO = 3;
   1.534 +	// N3 points for each pattern with >4W:1B:1W:3B:1W:1B or
   1.535 +	// 1B:1W:3B:1W:1B:>4W, or their multiples (e.g. highly unlikely, but 13W:3B:3W:9B:3W:3B counts).
   1.536 +	var PENALTY_FINDERLIKE = 40;
   1.537 +	// N4*k points for every (5*k)% deviation from 50% black density.
   1.538 +	// i.e. k=1 for 55~60% and 40~45%, k=2 for 60~65% and 35~40%, etc.
   1.539 +	var PENALTY_DENSITY = 10;
   1.540 +
   1.541 +	var evaluategroup = function(groups) { // assumes [W,B,W,B,W,...,B,W]
   1.542 +		var score = 0;
   1.543 +		for (var i = 0; i < groups.length; ++i) {
   1.544 +			if (groups[i] >= 5) score += PENALTY_CONSECUTIVE + (groups[i]-5);
   1.545 +		}
   1.546 +		for (var i = 5; i < groups.length; i += 2) {
   1.547 +			var p = groups[i];
   1.548 +			if (groups[i-1] == p && groups[i-2] == 3*p && groups[i-3] == p &&
   1.549 +					groups[i-4] == p && (groups[i-5] >= 4*p || groups[i+1] >= 4*p)) {
   1.550 +				// this part differs from zxing...
   1.551 +				score += PENALTY_FINDERLIKE;
   1.552 +			}
   1.553 +		}
   1.554 +		return score;
   1.555 +	};
   1.556 +
   1.557 +	var n = matrix.length;
   1.558 +	var score = 0, nblacks = 0;
   1.559 +	for (var i = 0; i < n; ++i) {
   1.560 +		var row = matrix[i];
   1.561 +		var groups;
   1.562 +
   1.563 +		// evaluate the current row
   1.564 +		groups = [0]; // the first empty group of white
   1.565 +		for (var j = 0; j < n; ) {
   1.566 +			var k;
   1.567 +			for (k = 0; j < n && row[j]; ++k) ++j;
   1.568 +			groups.push(k);
   1.569 +			for (k = 0; j < n && !row[j]; ++k) ++j;
   1.570 +			groups.push(k);
   1.571 +		}
   1.572 +		score += evaluategroup(groups);
   1.573 +
   1.574 +		// evaluate the current column
   1.575 +		groups = [0];
   1.576 +		for (var j = 0; j < n; ) {
   1.577 +			var k;
   1.578 +			for (k = 0; j < n && matrix[j][i]; ++k) ++j;
   1.579 +			groups.push(k);
   1.580 +			for (k = 0; j < n && !matrix[j][i]; ++k) ++j;
   1.581 +			groups.push(k);
   1.582 +		}
   1.583 +		score += evaluategroup(groups);
   1.584 +
   1.585 +		// check the 2x2 box and calculate the density
   1.586 +		var nextrow = matrix[i+1] || [];
   1.587 +		nblacks += row[0];
   1.588 +		for (var j = 1; j < n; ++j) {
   1.589 +			var p = row[j];
   1.590 +			nblacks += p;
   1.591 +			// at least comparison with next row should be strict...
   1.592 +			if (row[j-1] == p && nextrow[j] === p && nextrow[j-1] === p) {
   1.593 +				score += PENALTY_TWOBYTWO;
   1.594 +			}
   1.595 +		}
   1.596 +	}
   1.597 +
   1.598 +	score += PENALTY_DENSITY * ((Math.abs(nblacks / n / n - 0.5) / 0.05) | 0);
   1.599 +	return score;
   1.600 +};
   1.601 +
   1.602 +// returns the fully encoded QR code matrix which contains given data.
   1.603 +// it also chooses the best mask automatically when mask is -1.
   1.604 +var generate = function(data, ver, mode, ecclevel, mask) {
   1.605 +	var v = VERSIONS[ver];
   1.606 +	var buf = encode(ver, mode, data, ndatabits(ver, ecclevel) >> 3);
   1.607 +	buf = augumenteccs(buf, v[1][ecclevel], GF256_GENPOLY[v[0][ecclevel]]);
   1.608 +
   1.609 +	var result = makebasematrix(ver);
   1.610 +	var matrix = result.matrix, reserved = result.reserved;
   1.611 +	putdata(matrix, reserved, buf);
   1.612 +
   1.613 +	if (mask < 0) {
   1.614 +		// find the best mask
   1.615 +		maskdata(matrix, reserved, 0);
   1.616 +		putformatinfo(matrix, reserved, ecclevel, 0);
   1.617 +		var bestmask = 0, bestscore = evaluatematrix(matrix);
   1.618 +		maskdata(matrix, reserved, 0);
   1.619 +		for (mask = 1; mask < 8; ++mask) {
   1.620 +			maskdata(matrix, reserved, mask);
   1.621 +			putformatinfo(matrix, reserved, ecclevel, mask);
   1.622 +			var score = evaluatematrix(matrix);
   1.623 +			if (bestscore > score) {
   1.624 +				bestscore = score;
   1.625 +				bestmask = mask;
   1.626 +			}
   1.627 +			maskdata(matrix, reserved, mask);
   1.628 +		}
   1.629 +		mask = bestmask;
   1.630 +	}
   1.631 +
   1.632 +	maskdata(matrix, reserved, mask);
   1.633 +	putformatinfo(matrix, reserved, ecclevel, mask);
   1.634 +	return matrix;
   1.635 +};
   1.636 +
   1.637 +// the public interface is trivial; the options available are as follows:
   1.638 +//
   1.639 +// - version: an integer in [1,40]. when omitted (or -1) the smallest possible
   1.640 +//   version is chosen.
   1.641 +// - mode: one of 'numeric', 'alphanumeric', 'octet'. when omitted the smallest
   1.642 +//   possible mode is chosen.
   1.643 +// - ecclevel: one of 'L', 'M', 'Q', 'H'. defaults to 'L'.
   1.644 +// - mask: an integer in [0,7]. when omitted (or -1) the best mask is chosen.
   1.645 +//
   1.646 +// for generate{HTML,PNG}:
   1.647 +//
   1.648 +// - modulesize: a number. this is a size of each modules in pixels, and
   1.649 +//   defaults to 5px.
   1.650 +// - margin: a number. this is a size of margin in *modules*, and defaults to
   1.651 +//   4 (white modules). the specficiation mandates the margin no less than 4
   1.652 +//   modules, so it is better not to alter this value unless you know what
   1.653 +//   you're doing.
   1.654 +var QRCode = {
   1.655 +	'generate': function(data, options) {
   1.656 +		var MODES = {'numeric': MODE_NUMERIC, 'alphanumeric': MODE_ALPHANUMERIC,
   1.657 +			'octet': MODE_OCTET};
   1.658 +		var ECCLEVELS = {'L': ECCLEVEL_L, 'M': ECCLEVEL_M, 'Q': ECCLEVEL_Q,
   1.659 +			'H': ECCLEVEL_H};
   1.660 +
   1.661 +		options = options || {};
   1.662 +		var ver = options.version || -1;
   1.663 +		var ecclevel = ECCLEVELS[(options.ecclevel || 'L').toUpperCase()];
   1.664 +		var mode = options.mode ? MODES[options.mode.toLowerCase()] : -1;
   1.665 +		var mask = 'mask' in options ? options.mask : -1;
   1.666 +
   1.667 +		if (mode < 0) {
   1.668 +			if (typeof data === 'string') {
   1.669 +				if (data.match(NUMERIC_REGEXP)) {
   1.670 +					mode = MODE_NUMERIC;
   1.671 +				} else if (data.match(ALPHANUMERIC_OUT_REGEXP)) {
   1.672 +					// while encode supports case-insensitive
   1.673 +					// encoding, we restrict the data to be
   1.674 +					// uppercased when auto-selecting the mode.
   1.675 +					mode = MODE_ALPHANUMERIC;
   1.676 +				} else {
   1.677 +					mode = MODE_OCTET;
   1.678 +				}
   1.679 +			} else {
   1.680 +				mode = MODE_OCTET;
   1.681 +			}
   1.682 +		} else if (!(mode == MODE_NUMERIC || mode == MODE_ALPHANUMERIC ||
   1.683 +				mode == MODE_OCTET)) {
   1.684 +			throw 'invalid or unsupported mode';
   1.685 +		}
   1.686 +
   1.687 +		data = validatedata(mode, data);
   1.688 +		if (data === null) throw 'invalid data format';
   1.689 +
   1.690 +		if (ecclevel < 0 || ecclevel > 3) throw 'invalid ECC level';
   1.691 +
   1.692 +		if (ver < 0) {
   1.693 +			for (ver = 1; ver <= 40; ++ver) {
   1.694 +				if (data.length <= getmaxdatalen(ver, mode, ecclevel)) break;
   1.695 +			}
   1.696 +			if (ver > 40) throw 'too large data';
   1.697 +		} else if (ver < 1 || ver > 40) {
   1.698 +			throw 'invalid version';
   1.699 +		}
   1.700 +
   1.701 +		if (mask != -1 && (mask < 0 || mask > 8)) throw 'invalid mask';
   1.702 +
   1.703 +		return generate(data, ver, mode, ecclevel, mask);
   1.704 +	},
   1.705 +
   1.706 +
   1.707 +	'generatePNG': function(data, options) {
   1.708 +		options = options || {};
   1.709 +		var matrix = QRCode['generate'](data, options);
   1.710 +		var modsize = Math.max(options.modulesize || 5, 0.5);
   1.711 +		var margin = Math.max(options.margin || 4, 0.0);
   1.712 +		var n = matrix.length;
   1.713 +		var size = modsize * (n + 2 * margin);
   1.714 +
   1.715 +		var canvas = document.createElement('canvas'), context;
   1.716 +		canvas.width = canvas.height = size;
   1.717 +		context = canvas.getContext('2d');
   1.718 +		if (!context) throw 'canvas support is needed for PNG output';
   1.719 +
   1.720 +		context.fillStyle = '#fff';
   1.721 +		context.fillRect(0, 0, size, size);
   1.722 +		context.fillStyle = '#000';
   1.723 +		for (var i = 0; i < n; ++i) {
   1.724 +			for (var j = 0; j < n; ++j) {
   1.725 +				if (matrix[i][j]) {
   1.726 +					context.fillRect(modsize * (margin + j), modsize * (margin + i), modsize, modsize);
   1.727 +				}
   1.728 +			}
   1.729 +		}
   1.730 +		//context.fillText('evaluation: ' + evaluatematrix(matrix), 10, 10);
   1.731 +		return canvas.toDataURL();
   1.732 +	}
   1.733 +};
   1.734 +
   1.735 +return QRCode;
   1.736 +})();